Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 9.514
1.
J Physiol ; 602(9): 1987-2017, 2024 May.
Article En | MEDLINE | ID: mdl-38593215

When the foot dorsum contacts an obstacle during locomotion, cutaneous afferents signal central circuits to coordinate muscle activity in the four limbs. Spinal cord injury disrupts these interactions, impairing balance and interlimb coordination. We evoked cutaneous reflexes by electrically stimulating left and right superficial peroneal nerves before and after two thoracic lateral hemisections placed on opposite sides of the cord at 9- to 13-week interval in seven adult cats (4 males and 3 females). We recorded reflex responses in ten hindlimb and five forelimb muscles bilaterally. After the first (right T5-T6) and second (left T10-T11) hemisections, coordination of the fore- and hindlimbs was altered and/or became less consistent. After the second hemisection, cats required balance assistance to perform quadrupedal locomotion. Short-latency reflex responses in homonymous and crossed hindlimb muscles largely remained unaffected after staggered hemisections. However, mid- and long-latency homonymous and crossed responses in both hindlimbs occurred less frequently after staggered hemisections. In forelimb muscles, homolateral and diagonal mid- and long-latency response occurrence significantly decreased after the first and second hemisections. In all four limbs, however, when present, short-, mid- and long-latency responses maintained their phase-dependent modulation. We also observed reduced durations of short-latency inhibitory homonymous responses in left hindlimb extensors early after the first hemisection and delayed short-latency responses in the right ipsilesional hindlimb after the first hemisection. Therefore, changes in cutaneous reflex responses correlated with impaired balance/stability and interlimb coordination during locomotion after spinal cord injury. Restoring reflex transmission could be used as a biomarker to facilitate locomotor recovery. KEY POINTS: Cutaneous afferent inputs coordinate muscle activity in the four limbs during locomotion when the foot dorsum contacts an obstacle. Thoracic spinal cord injury disrupts communication between spinal locomotor centres located at cervical and lumbar levels, impairing balance and limb coordination. We investigated cutaneous reflexes during quadrupedal locomotion by electrically stimulating the superficial peroneal nerve bilaterally, before and after staggered lateral thoracic hemisections of the spinal cord in cats. We showed a loss/reduction of mid- and long-latency responses in all four limbs after staggered hemisections, which correlated with altered coordination of the fore- and hindlimbs and impaired balance. Targeting cutaneous reflex pathways projecting to the four limbs could help develop therapeutic approaches aimed at restoring transmission in ascending and descending spinal pathways.


Hindlimb , Locomotion , Muscle, Skeletal , Reflex , Spinal Cord Injuries , Animals , Cats , Hindlimb/innervation , Hindlimb/physiology , Hindlimb/physiopathology , Male , Female , Spinal Cord Injuries/physiopathology , Reflex/physiology , Locomotion/physiology , Muscle, Skeletal/innervation , Muscle, Skeletal/physiology , Muscle, Skeletal/physiopathology , Skin/innervation , Thoracic Vertebrae , Forelimb/physiopathology , Forelimb/physiology , Electric Stimulation
2.
J Neurosci ; 44(19)2024 May 08.
Article En | MEDLINE | ID: mdl-38553047

Glycinergic neurons regulate nociceptive and pruriceptive signaling in the spinal cord, but the identity and role of the glycine-regulated neurons are not fully known. Herein, we have characterized spinal glycine receptor alpha 3 (Glra3) subunit-expressing neurons in Glra3-Cre female and male mice. Glra3-Cre(+) neurons express Glra3, are located mainly in laminae III-VI, and respond to glycine. Chemogenetic activation of spinal Glra3-Cre(+) neurons induced biting/licking, stomping, and guarding behaviors, indicative of both a nociceptive and pruriceptive role for this population. Chemogenetic inhibition did not affect mechanical or thermal responses but reduced behaviors evoked by compound 48/80 and chloroquine, revealing a pruriceptive role for these neurons. Spinal cells activated by compound 48/80 or chloroquine express Glra3, further supporting the phenotype. Retrograde tracing revealed that spinal Glra3-Cre(+) neurons receive input from afferents associated with pain and itch, and dorsal root stimulation validated the monosynaptic input. In conclusion, these results show that spinal Glra3(+) neurons contribute to acute communication of compound 48/80- and chloroquine-induced itch in hairy skin.


Pruritus , Receptors, Glycine , Spinal Cord , Animals , Pruritus/chemically induced , Pruritus/metabolism , Mice , Receptors, Glycine/metabolism , Male , Female , Spinal Cord/metabolism , Spinal Cord/drug effects , Chloroquine/pharmacology , Mice, Transgenic , Skin/innervation , Mice, Inbred C57BL , p-Methoxy-N-methylphenethylamine/pharmacology , Neurons/metabolism , Neurons/drug effects , Neurons/physiology
3.
Mol Pain ; 20: 17448069241240452, 2024.
Article En | MEDLINE | ID: mdl-38438192

We recently used Nav1.8-ChR2 mice in which Nav1.8-expressing afferents were optogenetically tagged to classify mechanosensitive afferents into Nav1.8-ChR2-positive and Nav1.8-ChR2-negative mechanoreceptors. We found that the former were mainly high threshold mechanoreceptors (HTMRs), while the latter were low threshold mechanoreceptors (LTMRs). In the present study, we further investigated whether the properties of these mechanoreceptors were altered following tissue inflammation. Nav1.8-ChR2 mice received a subcutaneous injection of saline or Complete Freund's Adjuvant (CFA) in the hindpaws. Using the hind paw glabrous skin-tibial nerve preparation and the pressure-clamped single-fiber recordings, we found that CFA-induced hind paw inflammation lowered the mechanical threshold of many Nav1.8-ChR2-positive Aß-fiber mechanoreceptors but heightened the mechanical threshold of many Nav1.8-ChR2-negative Aß-fiber mechanoreceptors. Spontaneous action potential impulses were not observed in Nav1.8-ChR2-positive Aß-fiber mechanoreceptors but occurred in Nav1.8-ChR2-negative Aß-fiber mechanoreceptors with a lower mechanical threshold in the saline goup, and a higher mechanical threshold in the CFA group. No significant change was observed in the mechanical sensitivity of Nav1.8-ChR2-positive and Nav1.8-ChR2-negative Aδ-fiber mechanoreceptors and Nav1.8-ChR2-positive C-fiber mechanoreceptors following hind paw inflammation. Collectively, inflammation significantly altered the functional properties of both Nav1.8-ChR2-positive and Nav1.8-ChR2-negative Aß-fiber mechanoreceptors, which may contribute to mechanical allodynia during inflammation.


Mechanoreceptors , Skin , Mice , Animals , Skin/innervation , Hyperalgesia , Nerve Fibers, Unmyelinated/physiology , Inflammation
4.
J Neurosci ; 44(15)2024 Apr 10.
Article En | MEDLINE | ID: mdl-38471780

Following peripheral nerve injury, denervated tissues can be reinnervated via regeneration of injured neurons or collateral sprouting of neighboring uninjured afferents into denervated territory. While there has been substantial focus on mechanisms underlying regeneration, collateral sprouting has received less attention. Here, we used immunohistochemistry and genetic neuronal labeling to define the subtype specificity of sprouting-mediated reinnervation of plantar hindpaw skin in the mouse spared nerve injury (SNI) model, in which productive regeneration cannot occur. Following initial loss of cutaneous afferents in the tibial nerve territory, we observed progressive centripetal reinnervation by multiple subtypes of neighboring uninjured fibers into denervated glabrous and hairy plantar skin of male mice. In addition to dermal reinnervation, CGRP-expressing peptidergic fibers slowly but continuously repopulated denervated epidermis, Interestingly, GFRα2-expressing nonpeptidergic fibers exhibited a transient burst of epidermal reinnervation, followed by a trend towards regression. Presumptive sympathetic nerve fibers also sprouted into denervated territory, as did a population of myelinated TrkC lineage fibers, though the latter did so inefficiently. Conversely, rapidly adapting Aß fiber and C fiber low threshold mechanoreceptor (LTMR) subtypes failed to exhibit convincing sprouting up to 8 weeks after nerve injury in males or females. Optogenetics and behavioral assays in male mice further demonstrated the functionality of collaterally sprouted fibers in hairy plantar skin with restoration of punctate mechanosensation without hypersensitivity. Our findings advance understanding of differential collateral sprouting among sensory neuron subpopulations and may guide strategies to promote the progression of sensory recovery or limit maladaptive sensory phenomena after peripheral nerve injury.


Peripheral Nerve Injuries , Female , Mice , Male , Animals , Nerve Regeneration/physiology , Skin/innervation , Neurogenesis , Neurons, Afferent/physiology
5.
Cell ; 187(6): 1508-1526.e16, 2024 Mar 14.
Article En | MEDLINE | ID: mdl-38442711

Dorsal root ganglia (DRG) somatosensory neurons detect mechanical, thermal, and chemical stimuli acting on the body. Achieving a holistic view of how different DRG neuron subtypes relay neural signals from the periphery to the CNS has been challenging with existing tools. Here, we develop and curate a mouse genetic toolkit that allows for interrogating the properties and functions of distinct cutaneous targeting DRG neuron subtypes. These tools have enabled a broad morphological analysis, which revealed distinct cutaneous axon arborization areas and branching patterns of the transcriptionally distinct DRG neuron subtypes. Moreover, in vivo physiological analysis revealed that each subtype has a distinct threshold and range of responses to mechanical and/or thermal stimuli. These findings support a model in which morphologically and physiologically distinct cutaneous DRG sensory neuron subtypes tile mechanical and thermal stimulus space to collectively encode a wide range of natural stimuli.


Ganglia, Spinal , Sensory Receptor Cells , Single-Cell Gene Expression Analysis , Animals , Mice , Ganglia, Spinal/cytology , Sensory Receptor Cells/cytology , Skin/innervation
6.
Cell Rep Methods ; 4(3): 100735, 2024 Mar 25.
Article En | MEDLINE | ID: mdl-38503290

Label-free imaging methodologies for nerve fibers rely on spatial signal continuity to identify fibers and fail to image free intraepidermal nerve endings (FINEs). Here, we present an imaging methodology-called discontinuity third harmonic generation (THG) microscopy (dTHGM)-that detects three-dimensional discontinuities in THG signals as the contrast. We describe the mechanism and design of dTHGM and apply it to reveal the bead-string characteristics of unmyelinated FINEs. We confirmed the label-free capability of dTHGM through a comparison study with the PGP9.5 immunohistochemical staining slides and a longitudinal spared nerve injury study. An intraepidermal nerve fiber (IENF) index based on a discontinuous-dot-connecting algorithm was developed to facilitate clinical applications of dTHGM. A preliminary clinical study confirmed that the IENF index was highly correlated with skin-biopsy-based IENF density (Pearson's correlation coefficient R = 0.98) and could achieve differential identification of small-fiber neuropathy (p = 0.0102) in patients with diabetic peripheral neuropathy.


Diabetic Neuropathies , Second Harmonic Generation Microscopy , Small Fiber Neuropathy , Humans , Nerve Fibers , Skin/innervation
7.
J Neurophysiol ; 131(5): 815-821, 2024 May 01.
Article En | MEDLINE | ID: mdl-38505867

On demand and localized treatment for excessive muscle tone after spinal cord injury (SCI) is currently not available. Here, we examine the reduction in leg hypertonus in a person with mid-thoracic, motor complete SCI using a commercial transcutaneous electrical stimulator (TES) applied at 50 or 150 Hz to the lower back and the possible mechanisms producing this bilateral reduction in leg tone. Hypertonus of knee extensors without and during TES, with both cathode (T11-L2) and anode (L3-L5) placed over the spinal column (midline, MID) or 10 cm to the left of midline (lateral, LAT) to only active underlying skin and muscle afferents, was simultaneously measured in both legs with the pendulum test. Spinal reflexes mediated by proprioceptive (H-reflex) and cutaneomuscular reflex (CMR) afferents were examined in the right leg opposite to the applied LAT TES. Hypertonus disappeared in both legs but only during thoracolumbar TES, and even during LAT TES. The marked reduction in tone was reflected in the greater distance both lower legs first dropped to after being released from a fully extended position, increasing by 172.8% and 94.2% during MID and LAT TES, respectively, compared with without TES. Both MID and LAT (left) TES increased H-reflexes but decreased the first burst, and lengthened the onset of subsequent bursts, in the cutaneomuscular reflex of the right leg. Thoracolumbar TES is a promising method to decrease leg hypertonus in chronic, motor complete SCI without activating spinal cord structures and may work by facilitating proprioceptive inputs that activate excitatory interneurons with bilateral projections that in turn recruit recurrent inhibitory neurons.NEW & NOTEWORTHY We present proof of concept that surface stimulation of the lower back can reduce severe leg hypertonus in a participant with motor complete, thoracic spinal cord injury (SCI) but only during the applied stimulation. We propose that activation of skin and muscle afferents from thoracolumbar transcutaneous electrical stimulation (TES) may recruit excitatory spinal interneurons with bilateral projections that in turn recruit recurrent inhibitory networks to provide on demand suppression of ongoing involuntary motoneuron activity.


Muscle Hypertonia , Spinal Cord Injuries , Thoracic Vertebrae , Humans , Leg/physiopathology , Muscle Hypertonia/physiopathology , Muscle Hypertonia/etiology , Muscle Hypertonia/therapy , Muscle, Skeletal/physiopathology , Skin/innervation , Spinal Cord Injuries/physiopathology , Spinal Cord Injuries/therapy , Spinal Cord Injuries/complications , Spinal Nerve Roots/physiopathology , Spinal Nerve Roots/physiology , Transcutaneous Electric Nerve Stimulation/methods
8.
Physiol Behav ; 277: 114479, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38309608

Institutionalized children are often deprived of affective touch. Such tactile deprivation often leads to constant stress, as measured by the levels of salivary cortisol. We report here the impact of an affective touch program, optimized to activate a specific population of unmyelinated mechanosensitive nerves in the skin called c-tactile afferents (CT) on stress resistance. Two populations of children (age 4-10) were recruited: (i) a cohort living in an orphanage and (ii) a fostered cohort. Both groups received the affective touch program daily for 10-15 min for 5-6 weeks. A cohort of age-matched children living in a family environment acted as a control group and did not receive any instructions for tactile stimulation. Salivary cortisol was collected at the beginning (T1) and at the end (T2) of the study in all three groups. For institutionalized and fostered children there was a significant improvement in the level of cortisol (p < 0.0001) between T1 and T2, which is manifested in the balancing cortisol levels: a decrease where it was elevated and an increase, where the critically low level testified to the distress of the child. Balancing cortisol levels is a process of recovery to normal values, which indicates the restoration of neurohumoral mechanisms of stress regulation. The effect of balancing cortisol levels was more pronounced in the group of fostered children compared to the group of orphanage children (p = 0.0326). The children in the control group had no significant differences.


Touch Perception , Touch , Child , Humans , Child, Preschool , Touch/physiology , Hydrocortisone , Child, Institutionalized , Touch Perception/physiology , Skin/innervation
9.
Auton Neurosci ; 252: 103154, 2024 Apr.
Article En | MEDLINE | ID: mdl-38330594

INTRODUCTION: Autonomic dysreflexia (AD) is a potentially life-threatening consequence in high (above T6) spinal cord injury that involves multiple incompletely understood mechanisms. While peripheral arteriolar vasoconstriction, which controls systemic vascular resistance, is documented to be pronounced during AD, the pathophysiological neurovascular junction mechanisms of this vasoconstriction are undefined. One hypothesized mechanism is increased neuronal release of norepinephrine and co-transmitters. We tested this by examining the effects of blockade of pre-synaptic neural release of norepinephrine and co-transmitters on cutaneous vasoconstriction during AD, using a novel non-invasive technique; bretylium (BT) iontophoresis followed by skin blood flow measurements via laser doppler flowmetry (LDF). METHODS: Bretylium, a sympathetic neuronal blocking agent (blocks release of norepinephrine and co-transmitters) was applied iontophoretically to the skin of a sensate (arm) and insensate (leg) area in 8 males with motor complete tetraplegia. An nearby untreated site served as control (CON). Cutaneous vascular conductance (CVC) was measured (CVC = LDF/mean arterial pressure) at normotension before AD was elicited by bladder stimulation. The percent drop in CVC values from pre-AD vs. AD was compared among BT and CON sites in sensate and insensate areas. RESULTS: There was a significant effect of treatment but no significant effect of limb/sensation or interaction of limb x treatment on CVC. The percent drop in CVC between BT and CON treated sites was 25.7±1.75 vs. 39.4±0.87, respectively (P = 0.004). CONCLUSION: Bretylium attenuates, but does not fully abolish vasoconstriction during AD. This suggests release of norepinephrine and cotransmitters from cutaneous sympathetic nerves is involved in cutaneous vasoconstriction during AD.


Autonomic Dysreflexia , Bretylium Compounds , Vasoconstriction , Male , Humans , Skin Temperature , Skin/innervation , Norepinephrine/pharmacology , Neurotransmitter Agents/pharmacology , Regional Blood Flow
10.
Clin Auton Res ; 34(1): 177-189, 2024 02.
Article En | MEDLINE | ID: mdl-38308178

PURPOSE: Sympathetic nerve activity towards muscle (MSNA) and skin (SSNA) regulates various physiological parameters. MSNA primarily functions in blood pressure and flow, while SSNA operates in thermoregulation. Physical and cognitive stressors have been shown to have effects on both types of sympathetic activity, but there are inconsistencies as to what these effects are. This article aims to address the discrepancies in the literature and compare MSNA and SSNA responses. METHODS: Microelectrode recordings were taken from the common peroneal nerve in 29 participants: MSNA (n = 21), SSNA (n = 16) and both MSNA and SSNA (n = 8). Participants were subjected to four different 2-min stressors: two physical (isometric handgrip task, cold pressor test) and two cognitive (mental arithmetic task, Stroop colour-word conflict test), the latter of which saw participants separated into responders and non-responders to the stressors. It was hypothesised that the physical stressors would have a greater effect on MSNA than SSNA, while the cognitive stressors would operate conversely. RESULTS: Peristimulus time histogram (PSTH) analysis showed the mental arithmetic task to significantly increase both MSNA and SSNA; the isometric handgrip task and cold pressor test to increase MSNA, but not SSNA; and Stroop test to have no significant effects on changing MSNA or SSNA from baseline. Additionally, stress responses did not differ between MSNA and SSNA in participants who had both sets of data recorded. CONCLUSIONS: This study has provided evidence to support the literature which claims cognitive stressors increase sympathetic activity, and provides much needed SSNA data in response to stressors.


Hand Strength , Skin , Humans , Skin/innervation , Muscles/innervation , Blood Pressure/physiology , Sympathetic Nervous System/physiology , Cognition , Muscle, Skeletal/innervation
11.
Scand J Pain ; 24(1)2024 Jan 01.
Article En | MEDLINE | ID: mdl-38381703

OBJECTIVES: We aimed to investigate to what extent small fiber tests were abnormal in an unselected retrospective patient material with symptoms suggesting that small fiber neuropathy (SFN) could be present, and to evaluate possible gender differences. METHODS: Nerve conduction studies (NCS), skin biopsy for determination of intraepidermal nerve fiber density (IENFD) and quantitative sensory testing (QST) were performed. Z-scores were calculated from reference materials to adjust for the effects of age and gender/height. RESULTS: Two hundred and three patients, 148 females and 55 males had normal NCS and were considered to have possible SFN. 45.3 % had reduced IENFD, 43.2 % of the females and 50.9 % of the males. Mean IENFD was 7.3 ± 2.6 fibers/mm in females and 6.1 ± 2.3 in males (p<0.001), but the difference was not significant when adopting Z-scores. Comparison of gender differences between those with normal and abnormal IENFD were not significant when Z-scores were applied. QST was abnormal in 50 % of the patients (48.9 % in females and 52.9 % in males). In the low IENFD group 45 cases out of 90 (50 %) were recorded with abnormal QST. In those with normal IENFD 51 of 102 (50 %) showed abnormal QST. CONCLUSIONS: Less than half of these patients had reduced IENFD, and 50 % had abnormal QST. There were no gender differences. A more strict selection of patients might have increased the sensitivity, but functional changes in unmyelinated nerve fibers are also known to occur with normal IENFD. Approval to collect data was given by the Norwegian data protection authority at University Hospital of North Norway (Project no. 02028).


Small Fiber Neuropathy , Male , Female , Humans , Retrospective Studies , Small Fiber Neuropathy/diagnosis , Small Fiber Neuropathy/pathology , Nerve Fibers/pathology , Nerve Fibers/physiology , Skin/innervation , Biopsy
12.
Cell Rep ; 43(2): 113695, 2024 Feb 27.
Article En | MEDLINE | ID: mdl-38245870

While neurostimulation technologies are rapidly approaching clinical applications for sensorimotor disorders, the impact of electrical stimulation on network dynamics is still unknown. Given the high degree of shared processing in neural structures, it is critical to understand if neurostimulation affects functions that are related to, but not targeted by, the intervention. Here, we approach this question by studying the effects of electrical stimulation of cutaneous afferents on unrelated processing of proprioceptive inputs. We recorded intraspinal neural activity in four monkeys while generating proprioceptive inputs from the radial nerve. We then applied continuous stimulation to the radial nerve cutaneous branch and quantified the impact of the stimulation on spinal processing of proprioceptive inputs via neural population dynamics. Proprioceptive pulses consistently produce neural trajectories that are disrupted by concurrent cutaneous stimulation. This disruption propagates to the somatosensory cortex, suggesting that electrical stimulation can perturb natural information processing across the neural axis.


Peripheral Nerves , Spine , Electric Stimulation , Skin/innervation
14.
Elife ; 132024 Jan 16.
Article En | MEDLINE | ID: mdl-38225894

Traditionally, peripheral sensory neurons are assumed as the exclusive transducers of external stimuli. Current research moves epidermal keratinocytes into focus as sensors and transmitters of nociceptive and non-nociceptive sensations, tightly interacting with intraepidermal nerve fibers at the neuro-cutaneous unit. In animal models, epidermal cells establish close contacts and ensheath sensory neurites. However, ultrastructural morphological and mechanistic data examining the human keratinocyte-nerve fiber interface are sparse. We investigated this exact interface in human skin applying super-resolution array tomography, expansion microscopy, and structured illumination microscopy. We show keratinocyte ensheathment of afferents and adjacent connexin 43 contacts in native skin and have applied a pipeline based on expansion microscopy to quantify these parameter in skin sections of healthy participants versus patients with small fiber neuropathy. We further derived a fully human co-culture system, visualizing ensheathment and connexin 43 plaques in vitro. Unraveling human intraepidermal nerve fiber ensheathment and potential interaction sites advances research at the neuro-cutaneous unit. These findings are crucial on the way to decipher the mechanisms of cutaneous nociception.


Connexin 43 , Keratinocytes , Animals , Humans , Keratinocytes/physiology , Skin/innervation , Epidermis , Nerve Fibers
15.
Mol Pain ; 20: 17448069241226553, 2024.
Article En | MEDLINE | ID: mdl-38172079

Ultraviolet B (UVB) radiation induces cutaneous inflammation, leading to thermal and mechanical hypersensitivity. Here, we examine the mechanical properties and profile of tactile and nociceptive peripheral afferents functionally disrupted by this injury and the role of oxytocin (OXT) as a modulator of this disruption. We recorded intracellularly from L4 afferents innervating the irradiated area (5.1 J/cm2) in 4-6 old week male mice (C57BL/6J) after administering OXT intraperitoneally, 6 mg/Kg. The distribution of recorded neurons was shifted by UVB radiation to a pattern observed after acute and chronic injuries and reduced mechanical thresholds of A and C- high threshold mechanoreceptors while reducing tactile sensitivity. UVB radiation did not change somatic membrane electrical properties or fiber conduction velocity. OXT systemic administration rapidly reversed these peripheral changes toward normal in both low and high-threshold mechanoreceptors and shifted recorded neuron distribution toward normal. OXT and V1aR receptors were present on the terminals of myelinated and unmyelinated afferents innervating the skin. We conclude that UVB radiation, similar to local tissue surgical injury, cancer metastasis, and peripheral nerve injury, alters the distribution of low and high threshold mechanoreceptors afferents and sensitizes nociceptors while desensitizing tactile units. Acute systemic OXT administration partially returns all of those effects to normal.


Nociception , Oxytocin , Mice , Male , Animals , Oxytocin/pharmacology , Oxytocin/therapeutic use , Mice, Inbred C57BL , Touch/physiology , Skin/innervation , Mechanoreceptors , Nociceptors/physiology
16.
Brain ; 147(5): 1740-1750, 2024 May 03.
Article En | MEDLINE | ID: mdl-38123494

Over recent decades, peripheral sensory abnormalities, including the evidence of cutaneous denervation, have been reported among the non-motor manifestations in amyotrophic lateral sclerosis (ALS). However, a correlation between cutaneous innervation and clinical features has not been found. The aims of this study were to assess sensory involvement by applying a morpho-functional approach to a large population of ALS patients stratified according to King's stages and correlate these findings with the severity and prognosis of the disease. We recruited 149 ALS patients and 41 healthy controls. Patients undertook clinical questionnaires for small fibre neuropathy symptoms (Small Fiber Neuropathy Symptoms Inventory Questionnaire) and underwent nerve conductions studies (NCS) and 3-mm punch skin biopsies from leg, thigh and fingertip. We assessed intraepidermal nerve fibre (IENF) and Meissner corpuscle (MC) density by applying an indirect immunofluorescence technique. Moreover, a subset of 65 ALS patients underwent a longitudinal study with repeat biopsies from the thigh at 6- and 12-month follow-ups. Serum NfL levels were measured in 40 patients. Sensory symptoms and sensory NCS abnormalities were present in 32.2% and 24% of patients, respectively, and increased across clinical stages. Analogously, we observed a progressive reduction in amplitude of the sensory and motor ulnar nerve potential from stage 1 to stage 4. Skin biopsy showed a significant loss of IENFs and MCs in ALS compared with healthy controls (all P < 0.001). Across the clinical stages, we found a progressive reduction in MCs (P = 0.004) and an increase in IENFs (all P < 0.027). The increase in IENFs was confirmed by the longitudinal study. Interestingly, the MC density inversely correlated with NfL level (r = -0.424, P = 0.012), and survival analysis revealed that low MC density, higher NfL levels and increasing IENF density over time were associated with a poorer prognosis (all P < 0.024). To summarize, in patients with ALS, peripheral sensory involvement worsens in parallel with motor disability. Furthermore, the correlation between skin innervation and disease activity may suggest the use of skin innervation as a putative prognostic biomarker.


Amyotrophic Lateral Sclerosis , Skin , Humans , Amyotrophic Lateral Sclerosis/pathology , Male , Female , Middle Aged , Skin/innervation , Skin/pathology , Aged , Prognosis , Biomarkers/blood , Neural Conduction/physiology , Adult , Disease Progression , Neurofilament Proteins/blood , Neurofilament Proteins/metabolism , Longitudinal Studies
17.
J Pain ; 25(1): 64-72, 2024 Jan.
Article En | MEDLINE | ID: mdl-37524221

In this clinical and skin biopsy study, we aimed to investigate whether fibromyalgia-associated small-fiber pathology (SFP), consisting of an intraepidermal nerve fiber loss, implies damage of dermal autonomic nerve fibers and how this damage is associated with autonomic symptoms that patients with fibromyalgia syndrome experience. Using skin biopsy, we investigated intraepidermal nerve fiber density, piloerector muscle, and sweat gland nerve fiber density (SGNFD) in 138 participants, that is, 58 patients with fibromyalgia syndrome, 48 healthy subjects, and 32 patients with small-fiber neuropathy. In patients with fibromyalgia-associated SFP, we also investigated how the different skin biopsy variables correlated with autonomic symptoms, as assessed with the Composite Autonomic Symptom Score 31 questionnaire. We found that in patients with fibromyalgia-associated SFP, the piloerector muscle and SGNFD were lower than that in healthy subjects. However, the autonomic small-fiber damage had no correlation with autonomic symptoms severity. In patients with SFP, the intraepidermal, piloerector muscle, and SGNFD were higher than that in patients with small-fiber neuropathy. Our clinical and skin biopsy study shows that patients with fibromyalgia have a reduction of dermal autonomic small fibers paralleling the intraepidermal nerve fiber loss, thus indicating that SFP also implies autonomic small nerve fiber damage. However, the autonomic small-fiber damage we found had no correlation with the severity of autonomic symptoms, and thus its clinical impact is still undetermined. PERSPECTIVE: In patients with fibromyalgia, SFP also affects autonomic fibers. These novel data provide additional insights into the pathophysiology of fibromyalgia syndrome, highlighting the complex role of small-fiber damage in the clinical picture of fibromyalgia.


Fibromyalgia , Small Fiber Neuropathy , Humans , Skin/innervation , Nerve Fibers/pathology , Small Fiber Neuropathy/complications , Autonomic Nervous System , Biopsy
18.
J Neurophysiol ; 130(6): 1567-1577, 2023 12 01.
Article En | MEDLINE | ID: mdl-37964756

Thermal sensitivity is not uniform across the skin, and is particularly high in small (∼1 mm2) regions termed "thermosensitive spots." These spots are thought to reflect the anatomical location of specialized thermosensitive nerve endings from single primary afferents. Thermosensitive spots provide foundational support for "labeled line" or specificity theory of sensory perception, which states that different sensory qualities are transmitted by separate and specific neural pathways. This theory predicts a highly stable relation between repetitions of a thermal stimulus and the resulting sensory quality, yet these predictions have rarely been tested systematically. Here, we present the qualitative, spatial, and repeatability properties of 334 thermosensitive spots on the dorsal forearm sampled across four separate sessions. In line with previous literature, we found that spots associated with cold sensations (112 cold spots, 34%) were more frequent than spots associated with warm sensations (41 warm spots, 12%). Still more frequent (165 spots, 49%) were spots that elicited inconsistent sensations when repeatedly stimulated by the same temperature. Remarkably, only 13 spots (4%) conserved their position between sessions. Overall, we show unexpected inconsistency of both the perceptual responses elicited by spot stimulation and of spot locations across time. These observations suggest reappraisals of the traditional view that thermosensitive spots reflect the location of individual thermosensitive, unimodal primary afferents serving as specific labeled lines for corresponding sensory qualities.NEW & NOTEWORTHY Thermosensitive spots are clustered rather than randomly distributed and have the highest density near the wrist. Surprisingly, we found that thermosensitive spots elicit inconsistent sensory qualities and are unstable over time. Our results question the widely believed notion that thermosensitive spots reflect the location of individual thermoreceptive, unimodal primary afferents that serve as labelled lines for corresponding sensory qualities.


Menthol , Skin , Temperature , Skin/innervation , Sensation , Upper Extremity , Cold Temperature
19.
J Clin Neurophysiol ; 40(7): 616-624, 2023 Nov 01.
Article En | MEDLINE | ID: mdl-37931163

INTRODUCTION: Demonstration of nociceptive fiber abnormality is important for diagnosing neuropathic pain and small fiber neuropathies. This is usually assessed by brief heat pulses using lasers, contact heat, or special electrodes. We hypothesized that pain-related evoked potentials to conventional surface electrical stimulation (PREPse) can index Aδ afferences despite tactile Aß fibers coactivation. PREPse may be more readily used clinically than contact heat evoked potentials (CHEPS). METHODS: Twenty-eight healthy subjects. Vertex (Cz-A1/A2) recordings. Electrical stimulation of middle finger and second toe with conventional ring, and forearm/leg skin with cup, electrodes. Contact heat stimulation to forearm and leg. Compression ischemic nerve blockade. RESULTS: PREPse peripheral velocities were within the midrange of Aδ fibers. N1-P1 amplitude increased with pain numerical rating scale graded (0-10) electrical stimulation (n = 25) and decreased with increasing stimulation frequency. Amplitudes were unchanged by different presentation orders of four stimulation intensities. PREPse N1 (∼130 milliseconds) and N2 (∼345 milliseconds) peaks were approximately 40 milliseconds earlier than that with CHEPS. PREPse and CHEPS N1-N2 interpeak latency (∼207 milliseconds) were similar. PREPse became unrecordable with nerve blockade of Aδ fibers. CONCLUSIONS: PREPse earlier N1 and N2 peaks, and similar interpeak N1-N2 latencies and central conduction velocities, or synaptic delays, to CHEPS are consistent with direct stimulation of Aδ fibers. The relation of vertex PREPse amplitude and pain, or the differential effects of frequency stimulation, is similar to pain-related evoked potential to laser, special electrodes, or contact heat stimulation. The relationship to Aδ was validated by conduction velocity and nerve block. Clinical utility of PREPse compared with CHEPS needs validation in somatosensory pathways lesions.


Hot Temperature , Neuralgia , Humans , Evoked Potentials, Somatosensory/physiology , Evoked Potentials , Skin/innervation , Skin/pathology , Electric Stimulation
20.
Dev Cell ; 58(20): 2013-2014, 2023 10 23.
Article En | MEDLINE | ID: mdl-37875070

In this issue of Developmental Cell, Koutsioumpa et al. (2023) investigate the maturation of low-threshold mechanoreceptor nerve endings in both hairy and glabrous skin types and discover a critical role for target-derived BMP in the development of Meissner corpuscles in glabrous (i.e., hairless) skin.


Hair , Skin , Skin/innervation , Mechanoreceptors/metabolism
...